92 research outputs found

    Deep Learning for Raman Spectroscopy:: A Review

    Get PDF
    Raman spectroscopy (RS) is a spectroscopic method which indirectly measures the vibrational states within samples. This information on vibrational states can be utilized as spectroscopic fingerprints of the sample, which, subsequently, can be used in a wide range of application scenarios to determine the chemical composition of the sample without altering it, or to predict a sample property, such as the disease state of patients. These two examples are only a small portion of the application scenarios, which range from biomedical diagnostics to material science questions. However, the Raman signal is weak and due to the label-free character of RS, the Raman data is untargeted. Therefore, the analysis of Raman spectra is challenging and machine learning based chemometric models are needed. As a subset of representation learning algorithms, deep learning (DL) has had great success in data science for the analysis of Raman spectra and photonic data in general. In this review, recent developments of DL algorithms for Raman spectroscopy and the current challenges in the application of these algorithms will be discussed

    Rapid Raman spectroscopic analysis of stress induced degradation of the pharmaceutical drug tetracycline

    Get PDF
    Stress factors caused by inadequate storage can induce the unwanted degradation of active compounds in pharmaceutical formulations. Resonance Raman spectroscopy is presented as an analytical tool for rapid monitoring of small concentration changes of tetracycline and the metabolite 4-epianhydrotetracycline. These degradation processes were experimentally induced by changes in temperature, humidity, and irradiation with visible light over a time period of up to 23 days. The excitation wavelength ?exc = 413 nm was proven to provide short acquisition times for the simultaneous Raman spectroscopic detection of the degradation of tetracycline and production of its impurity in small sample volumes. Small concentration changes could be detected (down to 1.4% for tetracycline and 0.3% for 4-epianhydrotetracycline), which shows the potential of resonance Raman spectroscopy for analyzing the decomposition of pharmaceutical products. © 2020 by the authors

    Fusion of MALDI Spectrometric Imaging and Raman Spectroscopic Data for the Analysis of Biological Samples

    Get PDF
    Despite of a large number of imaging techniques for the characterization of biological samples, no universal one has been reported yet. In this work, a data fusion approach was investigated for combining Raman spectroscopic data with matrix-assisted laser desorption/ionization (MALDI) mass spectrometric data. It betters the image analysis of biological samples because Raman and MALDI information can be complementary to each other. While MALDI spectrometry yields detailed information regarding the lipid content, Raman spectroscopy provides valuable information about the overall chemical composition of the sample. The combination of Raman spectroscopic and MALDI spectrometric imaging data helps distinguishing different regions within the sample with a higher precision than would be possible by using either technique. We demonstrate that a data weighting step within the data fusion is necessary to reveal additional spectral features. The selected weighting approach was evaluated by examining the proportions of variance within the data explained by the first principal components of a principal component analysis (PCA) and visualizing the PCA results for each data type and combined data. In summary, the presented data fusion approach provides a concrete guideline on how to combine Raman spectroscopic and MALDI spectrometric imaging data for biological analysis

    A Computational Pipeline for Sepsis Patients’ Stratification and Diagnosis

    Get PDF
    Sepsis is still a little acknowledged public health issue, despite its increasing incidence and the growing mortality rate. In addition, a clear diagnosis can be lengthy and complicated, due to highly variable symptoms and non-specific criteria, causing the disease to be diagnosed and treated too late. This paper presents the HemoSpec platform, a decision support system which, by collecting and automatically processing data from several acquisition devices, can help in the early diagnosis of sepsis

    Deep learning a boon for biophotonics

    Get PDF
    This review covers original articles using deep learning in the biophotonic field published in the last years. In these years deep learning, which is a subset of machine learning mostly based on artificial neural network geometries, was applied to a number of biophotonic tasks and has achieved state-of-the-art performances. Therefore, deep learning in the biophotonic field is rapidly growing and it will be utilized in the next years to obtain real-time biophotonic decision-making systems and to analyze biophotonic data in general. In this contribution, we discuss the possibilities of deep learning in the biophotonic field including image classification, segmentation, registration, pseudostaining and resolution enhancement. Additionally, we discuss the potential use of deep learning for spectroscopic data including spectral data preprocessing and spectral classification. We conclude this review by addressing the potential applications and challenges of using deep learning for biophotonic data. © 2020 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei

    Highly Sensitive Detection of the Antibiotic Ciprofloxacin by Means of Fiber Enhanced Raman Spectroscopy

    Get PDF
    Sepsis and septic shock exhibit a rapid course and a high fatality rate. Antibiotic treatment is time-critical and precise knowledge of the antibiotic concentration during the patients’ treatment would allow individual dose adaption. Over- and underdosing will increase the antimicrobial efficacy and reduce toxicity. We demonstrated that fiber enhanced Raman spectroscopy (FERS) can be used to detect very low concentrations of ciprofloxacin in clinically relevant doses, down to 1.5 µM. Fiber enhancement was achieved in bandgap shifted photonic crystal fibers. The high linearity between the Raman signals and the drug concentrations allows a robust calibration for drug quantification. The needed sample volume was very low (0.58 µL) and an acquisition time of 30 s allowed the rapid monitoring of ciprofloxacin levels in a less invasive way than conventional techniques. These results demonstrate that FERS has a high potential for clinical in-situ monitoring of ciprofloxacin levels

    Ultra-compact tunable fiber laser for coherent anti-Stokes Raman imaging

    Get PDF
    This work describes the construction of an ultra-compact narrowband fiber laser source for coherent anti-Stokes Raman scattering microscopy of Raman tags, that is, for addressing Raman resonances of deuterated molecules and alkyne tags in the spectral range from 2080 to 2220 cm−1. A narrowband and fast electronically tunable cw seed source based on a semiconductor optical amplifier (SOA) emitting around 1335 nm has been employed to seed four-wave mixing (FWM) in an endlessly single mode fiber (ESM) pumped by a ps pulse duration Yb-fiber laser. A conversion efficiency of 50% is demonstrated. This compact fiber optical parametric amplifier (FOPA) has been used to perform coherent anti-Stokes Raman imaging experiments of crystalline deuterated palmitic acid

    Semantic segmentation of non-linear multimodal images for disease grading of inflammatory bowel disease: A segnet-based application

    Get PDF
    Non-linear multimodal imaging, the combination of coherent anti-stokes Raman scattering (CARS), two-photon excited fluorescence (TPEF) and second harmonic generation (SHG), has shown its potential to assist the diagnosis of different inflammatory bowel diseases (IBDs). This label-free imaging technique can support the ‘gold-standard’ techniques such as colonoscopy and histopathology to ensure an IBD diagnosis in clinical environment. Moreover, non-linear multimodal imaging can measure biomolecular changes in different tissue regions such as crypt and mucosa region, which serve as a predictive marker for IBD severity. To achieve a real-time assessment of IBD severity, an automatic segmentation of the crypt and mucosa regions is needed. In this paper, we semantically segment the crypt and mucosa region using a deep neural network. We utilized the SegNet architecture (Badrinarayanan et al., 2015) and compared its results with a classical machine learning approach. Our trained SegNet mod el achieved an overall F1 score of 0.75. This model outperformed the classical machine learning approach for the segmentation of the crypt and mucosa region in our study

    Computational tissue staining of non-linear multimodal imaging using supervised and unsupervised deep learning

    Get PDF
    Hematoxylin and Eosin (H&E) staining is the 'gold-standard' method in histopathology. However, standard H&E staining of high-quality tissue sections requires long sample preparation times including sample embedding, which restricts its application for 'real-time' disease diagnosis. Due to this reason, a label-free alternative technique like non-linear multimodal (NLM) imaging, which is the combination of three non-linear optical modalities including coherent anti-Stokes Raman scattering, two-photon excitation fluorescence and second-harmonic generation, is proposed in this work. To correlate the information of the NLM images with H&E images, this work proposes computational staining of NLM images using deep learning models in a supervised and an unsupervised approach. In the supervised and the unsupervised approach, conditional generative adversarial networks (CGANs) and cycle conditional generative adversarial networks (cycle CGANs) are used, respectively. Both CGAN and cycle CGAN models generate pseudo H&E images, which are quantitatively analyzed based on mean squared error, structure similarity index and color shading similarity index. The mean of the three metrics calculated for the computationally generated H&E images indicate significant performance. Thus, utilizing CGAN and cycle CGAN models for computational staining is beneficial for diagnostic applications without performing a laboratory-based staining procedure. To the author's best knowledge, it is the first time that NLM images are computationally stained to H&E images using GANs in an unsupervised manner
    • …
    corecore